
ORIGINAL CONTRIBUTION

Serum matrix metalloproteinase-9 levels and severity of symptoms
in boys with attention deficit hyperactivity disorder ADHD/
hyperkinetic disorder HKD

Halina Kadziela-Olech • Piotr Cichocki •

Justyna Chwiesko • Jerzy Konstantynowicz •
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Abstract The serum levels of matrix metalloproteinase-9

(MMP-9) in neuropsychiatric disorders of adults have been

widely investigated. So far, no studies have been conducted

on the relationship of MMP-9 and cognitive domains in

children with two phenotype models, attention deficit/

hyperactivity disorder and hyperkinetic disorder (ADHD/

HKD). The aim of this research was to evaluate and test the

hypothesis that serum MMP-9 levels are associated with

the severity of symptoms in children with ADHD/HKD and

to compare the results in two models of this disorder. The

study group comprised 37 Caucasian boys aged 7–12 years

with HKD, being a subset of the combined ADHD subtype.

Intellectual functions were measured using Wechsler

Intelligence Scale for Children-Revised. The analysis of

serum concentrations of MMP-9 was based on a quantita-

tive sandwich ELISA. The statistical regression analysis

revealed a correlation between increased serum MMP-9

levels and severity of symptoms in the ADHD (b = 0.33;

p = 0.043) and HKD (b = 0.34, p = 0.037) model.

According to the results, elevated levels of serum MMP-9

in boys with HKD may be associated with clinical impul-

sivity domain (b = 0.38; p = 0.019).
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Introduction

Matrix metalloproteinases (MMPs) (zinc-dependent pro-

teinases) play important roles in extracellular matrix

(ECM) remodelling in physiological and pathological

processes [1–6]. The ECM is not only a mechanical support

for its constituent cells, but also participates in the regu-

lation of metabolism and in the exchange of information

with the environment. To accomplish these functions, the

matrix should undergo constant transformation. The

imbalance between decay and renewal of ECM is charac-

teristic of most pathologies as their primary or secondary

cause [7, 8]. Matrix metalloproteinases are not only able to

cleave all the constituents of ECM proteins, but also to

activate or deactivate other numerous ‘‘signalling’’ mole-

cules, such as receptors, adhesion molecules and growth

factors [1, 5, 9, 10].

Matrix metalloproteinase-9 (MMP-9), a typical ECM

protease (gelatinase), is characterized by a wide range of

substrates in vitro [4, 6]. Recently, a convincing support for

the involvement of MMP-9 in inflammation, autoimmune

diseases, cancer metastases and physical injuries has been

reported [5]. Recent studies have also focused on the

relationship of MMP-9 with the neurological disorders in

adults, and its possible role in the reorganisation of ECM

after injuries of the nervous system. This gelatinase plays

an important role in system dysfunction of the blood–brain

barrier [11–15], and its level can be assessed in the plasma

[17–19]. The serum levels of MMP-9 in neuropsychiatric

disorders in adults have been widely studied. The data

focus an potential association of MMP-9 with depression,

schizophrenia and bipolar disorder in adults [20]. The

results of experiments using rodent models showed a role

of MMP-9 in epileptogenesis [21]. Many studies indicate

that cognitive dysfunctions may be associated with changes
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in MMP-9 activity [11, 17, 22–24], and show the impor-

tance of MMP-9 in cognitive dysfunctions of adult patients

with dementia [19, 25], cerebral ischemia [11, 13, 14, 17]

or neuropsychiatric symptoms in autoimmune diseases

[16]. So far, no studies have been conducted on the rela-

tionship of MMP-9 and cognitive function in children with

attention deficit/hyperactivity disorder and hyperkinetic

disorder (ADHD/HKD).

Cognitive deficits and behavioural symptoms in ADHD

have been studied intensely and are well documented [26–

34]. They are classified according to DSM-IVR [35] and

DSM-V [36], or ICD-10 [37]. These procedural approaches

to both classifications show some differences. The cogni-

tive symptoms of ADHD cover two domains: inattention

and hyperactivity/impulsivity. In the version of DSM-IVR

or DSM-V, three subtypes have been proposed and eval-

uated: ADHD predominately inattentive, predominately

hyperactive/impulsive (if symptoms involve only one

domain) or combined. According to ICD-10, HKD can be

diagnosed when symptoms belonging to all the domains

are observed, including inattention, hyperactivity and

impulsivity.

Neuropsychological studies concerning ADHD show a

variety of cognitive deficits, altered level of motivational

processes and irregularities in the stages of processing and

storage of information in the brain [30–33, 38–40]. Intel-

lectual and neuropsychological abilities in ADHD have

been investigated for many years [41–43]. Children with

ADHD exhibit a wide range of performance deficits across

a range of neuropsychological domains, including response

inhibition, working memory, planning, sense of time, sus-

tained attention, and Verbal learning [28, 31–33, 43–45].

Many studies have attempted to determine the character-

istic profiles of the intellectual capacity of children with

ADHD [27, 42, 46, 47]. Children with ADHD have a lower

overall level of intellectual ability than their healthy peers

[27, 32, 43, 47], but a similar decrease is also observed in

children with other neuropsychiatric disorders [42, 46].

Several studies also point to a difference between Verbal

and performance IQ in children with ADHD as compared

with healthy children [27, 40, 46, 47], whereas others

provide contradictory results regarding these cognitive

aspects [40, 42, 48]. Research to date could not fully

explain neuropsychiatric deficits in the functioning of

children with ADHD and their response to treatment.

Differences in the research paradigms along with the het-

erogeneity of the disease phenotypes are, at least partly,

responsible for the problem.

Despite of intense research in recent decades, the brain

processes and mechanisms which underlie the cognitive

deficits of ADHD are unclear. It can be assumed, that the

reorganization of the brain responsible for behavioural and

cognitive symptoms of ADHD/HKD, and changes in the

activity of MMP-9 may be the result of ECM reconfigu-

ration in this disorder. To date, serum MMP-9 levels in

children with ADHD/HKD have not been studied. There-

fore, the aim of this study was to evaluate associations

between serum MMP-9 levels and the symptoms severity

in children with ADHD/HKD. We hypothesized that the

activity of MMP-9 may be related to intensity of symptoms

and the degree of cognitive dysfunction in children with

ADHD/HKD.

Methods

Participants and procedure

The study group comprised 37 Caucasian boys with

Combined ADHD subtype and HKD, aged between 7 and

12 years (median 9.2 years; 25th percentile—7 and 75th

percentile 11 years). The study group was selected among

patients with hyperactivity symptoms from primary care,

who had been referred to the specialized psychiatric diag-

nosis and therapy at the Child and Adolescent Psychiatry

Unit of the University Children’s Hospital in Bialystok

(Poland).

The presence of several inattentive or hyperactive,

impulsive symptoms in two or more situation (at home,

school, in other activities) is required for the diagnosis of

ADHD/HKD [35–37]. Attention deficit/hyperactivity dis-

order symptoms at study baseline were measured using the

NICHQ Vanderbilt Assessment Scale for Parent (VAD-

PRS) and for Teacher (VADTRS) [49], each of which

being divided into two sections: symptoms and perfor-

mance. The VADPRS contains 47 items, and VADTRS

includes 35 items of symptoms and 8 items of performance.

The construction of the toolkit is based on the Diagnostic

and Statistical Manual of Mental Disorders, Fourth Edition

(DSM-IV) [35], and includes the 18 ADHD items (9—

inattention and 9—hyperactive/impulsive symptoms), and

as well as a screen for the following coexisting conditions:

oppositional-defiant disorder, conduct disorder, anxiety and

depression. The 4-point Likert scale rates the severity of

symptoms (i.e., 0 = never, 1 = occasionally, 2 = often,

and 3 = very often), whereas the 5-point Likert scale

assesses performance (i.e., 1 = excellent, 2 = above

average, 3 = average, 4 = somewhat of a problem,

5 = problematic). For Combined Inattention/Hyperactivity

subtype, at least six of nine items of inattention and at least

six of nine items of hyperactive/impulsivity need to score

two or three points, with at least one of performance

questions scoring four or five points. The internal consis-

tency and structure of the Vanderbilt Assessment Scales

are acceptable and consistent with DSM-IV and other

accepted measures of ADHD [50, 51]. This toolkit has
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recommendations of American Academy of Pediatrics as a

framework for diagnostic decision making in a child

6–12 years old [49].

Both classifications were used to identify a homoge-

neous phenotype of HKD/ADHD. The diagnosis of Com-

bined ADHD subtype was ascertained using current DSM-

IV criteria [35], stating that one must have at least six

positive responses to either the inattentive nine and six out

of nine items on hyperactive/impulsive nine core symp-

toms. The diagnosis of HKD was performed according to

the criteria of ICD-10 [37], requiring symptoms of three

domains (at least six of nine items of inattention, at least

three of five items of hyperactive and at least one of four of

impulsivity). In the study group, these symptoms were

present before the child reached 7 years of age, in a

number of situations, continued on regular basis for more

than 6 months and significantly impaired the child’s aca-

demic and social functioning. For the study, the 18 ADHD

items were examined by separating symptoms into sub-

scales of inattention, hyperactivity and impulsivity. Mean

(SD) subscale scores were computed across each rate for

each symptom domain.

Each examination comprised observation of the family

and other informants, attention being paid to parents/

guardians personality traits and attitudes to the child,

relationships of parents, the child’s behaviour towards his/

her parents/guardians, the child’s behaviour and sponta-

neous play and group functioning. Exclusion criteria of the

study were the coexistence of other psychiatric or neuro-

developmental disorders (e.g. autistic spectrum, obsessive–

compulsive, oppositional-defiant, conduct disorders, anxi-

ety, depression, tics), epilepsy, mental retardation and

somatic diseases. None of these boys had history of phar-

macological treatment.

All participants in the study were administered the

Wechsler Intelligence Scale for Children-Revised (WISC-

R, Polish adaptation) [52]. The intelligence quotient was

evaluated by a certified psychologist. Wechsler Intelligence

Scale for Children-Revised includes Verbal (subtests:

general information, similarities, arithmetic, Vocabulary,

understanding) and performance (subtests: picture com-

pletion, picture arrangement, block design, object assem-

bly, coding-digit symbol) scales. Raw scores obtained in

subtests results were restated for conversion in accordance

with the standards of the corresponding age group. The

sum of the results converted from individual subtests create

an overall score for the Verbal and performance scales. The

values corresponded to the amount of IQ results translated

into Verbal scales, wordless, and full of different age

groups. In addition to the standard deviation scores of these

subtests, Verbal intelligence scale, performance scale, and

full-scale IQ coefficients were calculated. The mean value

for all intelligence scales was 100 and the standard

deviation 15. The diagnosis of children was confirmed by

certified psychiatrist and psychologist.

Venous blood samples of each child with ADHD were

taken during the run psychiatric and psychological diag-

nosis. After centrifugation, the serum was frozen and stored

at -70 �C until the time of the signs. Matrix metallopro-

teinase-9 activity in the serum was determined by ELISA,

using a kit Human ELISA System Biotrak (GE Healthcare,

Amersham Biosciences) and expressed in lg/l. To mini-

mize assay variance, serum levels of MMP-9 from each

subject were measured on the same day. The assay was

based on a two-site ELISA sandwich format using two

antibodies directed against different epitopes of MMP-9.

Protocols were performed according to the manufacturer’s

instructions. The sensitivity defined as two standard devi-

ations above the zero dose binding was determined as

0.6 lg/l, assay range 4–128 lg/l.

Statistical analysis

All statistical analyses were performed using the Statistica

10.0 PL (StatSoft). Since many variables were not nor-

mally distributed according to the Shapiro–Wilk test, the

analysis used non-parametric tests: the Kruskal–Wallis test

with post hoc test, Mann–Whitney U test and Spearman’s

rank correlation. The values of the variables are presented

as mean ± SD or median, first and third quartile. The

regression analysis was performed. The univariate linear

regression models were created. The p value \0.05 was

considered statistically significant.

The study was approved by the Ethical Committee of

the Medical University of Bialystok, in accordance with the

principles of Guidelines for Good Clinical Practice R-I/

003/168.

Results

Both models (HKD and combined ADHD subtype) were

identified in every boy in the study group. Total scores

were similar for the clinical model of HKD (mean ± SD:

14.68 ± 2.00; median 14, first and third quartile:14–16)

and ADHD (mean ± SD: 14.76 ± 1.62; median 14, first

and third quartile:14–16). No significant differences were

noted between the average values of VADPRS

(mean ± SD: 39.95 ± 6.81) and VADTRS (mean ± SD:

38.14 ± 6.14) in the study group. There were significant

positive correlations between ICD-10 and DSM-IV symp-

toms (Rs = 0.95; p \ 0.001) and VADPRS (Rs = 0.69;

p = 0.001) (Table 1). In addition, the interrelationship

between HKD and ADHD domains was tested. The number

of hyperactivity symptoms of HKD correlated significantly

with hyperactivity/impulsivity of ADHD (Rs = 0.76;
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p \ 0.001), however the relationship between the impul-

sivity of HKD and ADHD domain was not significant

(Rs = 0.32; p = 0.06). There was a highly significant

correlation between inattention of HKD and inattention of

ADHD (Rs = 0.98; p \ 0.001) (Table 1).

The median values of the total IQ-98 (25th–75th per-

centile: 90–106), the Verbal IQ-102 (25th–75th percentile:

91–108) and the performance IQ-90 (25th–75th percentile:

87–106) were determined in all the study subjects. The

Vocabulary subtest and the Comprehension subtest with

the inattention domain showed a negatively significant

correlation (Rs = -0.42; p = 0.01 and -0.49; p = 0.002,

respectively) (Table 1).

The mean (SD) of MMP-9 levels 49.13 (15.86) lg/l and

median of MMP-9 levels 50.82 lg/l (25th percentile—

43.14 lg/l; 75th percentile—56.34 lg/l) in study group

amounted. The General Regression Models (GRM) were

used to assess the effect of MMP-9 on HKD/ADHD

symptoms (Table 2). The MMP-9 levels were significantly

associated with symptoms severity of HKD and of ADHD

(b = 0.34; p = 0.037 and b = 0.33; p = 0.043, respec-

tively) (Fig. 1a, b). Furthermore, serum MMP-9 concen-

trations correlated with increase impulsiveness (b = 0.38;

p = 0.019) (Fig. 2a, b).

Analysis of the relationship between serum activity of

MMP-9 and WISC-R subtests quotient measurements

revealed no correlation. There was no relationship between

age and the level of MMP-9 in the study group.

Discussion

To our best knowledge, this is the first study to assess the

levels of MMP-9 in children with HKD/ADHD, and to

investigate the correlation of MMP-9 with the cognitive

function and symptoms severity. A certain limitation of our

study was small group size. However, our intention was to

include children with a very similar phenotype of HKD/

Table 1 Cognitive domains

and intellectual functions in

boys with HKD

The comparison of DSM-IV to

ICD-10. Statistical coherence of

values was determined by

Spearman’s rank correlation

test. The statistical correlation

between intellectual functions

and domains of HKD was

determined by Spearman’s rank

correlation test

Rs Spearman’s rank correlation

coefficient

* Significant correlation at the

0.05 level (two-sided)

** Significant correlation at the

0.01 level (two-sided)

Mean (SD) HKD model

Inattention Hyperactivity Impulsivity

Rs p*, ** Rs p*, ** Rs p*, **

ICD (total) 14.68 (2.00) 0.82** \0.001 0.70** \0.001 0.38* 0.019

Inattention 7.11 (1.17) 1 0.32 0.24

Impulsivity 3.16 (0.73) 0.24 -0.10 1

Hyperactivity 4.43 (1.12) 0.32 1 -0.10

Combined ADHD subtype

DSM-IV (total) 14.76 (1.62) 0.89** \0.001 0.56** \0.001 0.35* 0.03

Inattention 7.03 (1.14) 0.92** \0.001 0.26 0.27

Hyperactivity/impulsivity 7.73 (0.87) 0.76** \0.001 0.32

VADPRS (total) 39.95 (6.81) 0.73** \0.001 0.35* 0.03 0.26

Inattention 19.29 (4.31) 0.74** \0.001 0.08 0.25

Hyperactivity/impulsivity 20.68 (3.57) 0.50** 0.001 0.61** \0.001 0.20

VADTRS (total) 38.14 (6.14) 0.19 0.05 0.08

Inattention 19.27 (3.68) 0.23 0.04 0.09

Hyperactivity/impulsivity 19.03 (3.81) 0.22 0.06 0.10

Total IQ 98.43 (14.12) -0.21 0.10 -0.10

Verbal IQ 99.40 (15.31) -0.11 0.13 0.02

Performance IQ 97.32 (14.41) -0.06 -0.01 -0.30

Information 10.38 (3.34) -0.09 0.12 0.15

Similarities 10.32 (2.68) -0.01 0.15 0.06

Arithmetic 8.95 (3.47) -0.06 -0.04 0.07

Vocabulary 10.00 (3.59) -0.42** 0.01 0.21 -0.15

Comprehension 10.14 (2.18) -0.49** 0.002 -0.05 -0.22

Picture completion 10.49 (1.74) -0.05 -0.10 0.08

Picture arrangement 10.57 (2.90) -0.03 0.19 -0.05

Block design 9.27 (3.39) 0.02 -0.04 -0.28

Object assembly 9.32 (2.69) -0.04 0.19 -0.07

Coding-digit symbol 8.05 (3.06) -0.31 -0.12 -0.32
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ADHD. In our study, the increased serum MMP-9 levels

was correlated with the severity of symptoms in the HKD/

ADHD clinical model. Based on the data, elevated levels of

serum MMP-9 in boys with HKD were specifically asso-

ciated with clinical impulsivity domain.

The motivation and reward, may represent another core

deficit for ADHD [53]. Children with ADHD/HKD are

incapable of to the self-control, reveal rapid unplanned

reactions and difficulty of postponing award [54, 55].

Experimental models of the impulsivity emphasize

repeatability even though behaviours are punishable [56].

The concept of impulsivity domain for HKD in accordance

with the ICD-10 includes four symptoms, whereas the

impulsivity is not a separate domain for ADHD in DSM IV

or DSM V [34–37, 57]. One of the four impulsivity

symptoms for HKD: ‘‘Talks excessively’’ is categorized as

a symptom of hyperactivity in DSM-IV and DSM-V [36,

37]. This had important implications for the interpretation

of our findings. Unclear conceptualization of the impul-

sivity domain may have influenced the differences in the

correlation between serum MMP-9 levels and HKD-model

or ADHD-model in the study group.

Our research shows that the severity of symptoms

affects WISC-R results. We found a significant negative

correlation between severity of inattention and the

Vocabulary and Comprehension subtests, which form

Verbal Conceptual Thinking (can shape account for social

intelligence, verbalization, memory recall) [33, 58]. It has

been proved that the attention deficit is most disturbing

factor in the social functioning of children with ADHD/

HKD. Symptoms of inattention hinder to establish social

relationships through observation and focus on the social

factors, that are essential for supporting interaction [30, 31,

59]. Most authors agree that children with a diagnosis of

combined ADHD subtype present with difficulties in the

largest number of areas of cognitive and psychosocial

functioning [32, 40, 41, 44, 47], but the reasons for the

existence of cognitive deficits in children with ADHD/

HKD are still unclear. Recent PET brain imaging studies

revealed, that the most DA deficits were evident in the

ventral striatum (modulation of reward and motivation) and

in the midbrain (where most DA neurons are located) [60],

which supports the DA hypothesis of ADHD [61, 62],

although the specific details are not yet clear. Dopamine

transporter DAT, which is located in dendrites and axonal

membrane, or activation of dopamine receptors may be

responsible for dopamine levels [62, 63]. Although most

studies have been focused on the prefronto-striatal system

[64], others, concerned with psychopharmacology and

Table 2 MMP-9 levels in relation to cognitive domains of HKD/

ADHD

b SE 95 % CI b p

HKD

MMP-9 0.043 0.02 0.003 0.084 0.34* 0.037*

Inattention

MMP-9 0.021 0.012 -0.003 0.045 0.29 0.085

Hyperactivity

MMP-9 0.004 0.012 -0.021 0.028 0.05 0.770

Impulsivity

MMP-9 0.018 0.007 0.003 0.032 0.38* 0.019*

ADHD

MMP-9 0.034 0.016 0.001 0.067 0.33* 0.043*

Innatention

MMP-9 0.021 0.011 -0.002 0.045 0.29 0.075

Hyperactivity/impulsivity

MMP-9 0.012 0.009 -0.005 0.031 0.24 0.160

b-standardized regression coefficient parameterization of sigma limits

b regression coefficient, SE standard error, CI confidence intervals

* Regression model statistically significant p \ 0.05
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Fig. 1 The symptom severity and MMP-9 levels in boys with HKD/

ADHD
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neuroimaging (MRI, fMRI) of brain processes, have

pointed to many cortical and subcortical brain regions

implicated in ADHD [65–67]. Furthermore, it has been

recently shown that many neural networks are involved in

cognitive and behavioural symptoms of ADHD [68–71].

Researchers who have defined the pattern for typical brain

development suggest that some childhood onset cases may

be disorders of neuroplasticity [72–74]. Some studies

support this hypothesis for autism or schizophrenia [73,

75]. The plasticity is a property of the nervous system that

provides the capability for adaptation, self-healing, learn-

ing and memory [73].

The extracellular proteolysis by MMP-9 is important for

the functional and structural synaptic plasticity [1, 2, 5–7, 9,

10]. Matrix metalloproteinase-9 is expressed in the hippo-

campus, striatum, diencephalon, midbrain, cerebellum and

frontal cortex of the rat [3, 6, 76, 78], with the greatest activity

in the hippocampus [14, 15, 24, 77]. The contribution of

MMP-9 in addictions to methamphetamine [79, 80] or

cocaine [76] may suggest its role in dopamine

neurotransmission. This enzyme, located in dendritic spines

is responsible for the structural changes in synapses and

thereby may be partly responsible for the improper regulation

of extracellular dopamine levels [81]. Matrix metallopro-

teinase-9 is required for the formation of abnormal synaptic

connections between hippocampal granule cell axons and

their dendrites in rodent brain, and is also related to immature

dendritic spine morphology [82]. The level of this enzyme is

elevated in Fragile X syndrome (FXS), in which inattention,

impulsivity and hyperactivity are manifested beside autism,

and administration of minocycline (MMP-9 inhibitor) to

mouse model of FXS results in normalization of behaviours

and a decrease in anxiety [83]. Despite the absence of clinical

symptoms of ASD in our study boys, according to research,

inadequate social behaviours in children with ADHD may be

phenomenologically and etiologically related to autism

spectrum disorders [84, 85].

The MMP-9 concentration increases in inflammation,

hypoxia or injuries of brain, where the blood–brain barrier

is damaged [11–17, 86]. This leads to the hypothesis that

prenatal environmental risk factors for ADHD, such as

viral infections, asphyxia, neurotoxins, alcohol or nicotine

can affect the expression of MMP-9, and consequently the

long-term alteration in blood–brain barrier permeability to

small-molecular-weight markers [12, 75]. Minocycline

through inhibition of MMP-9, reduces permeability of

sucrose during intracerebral injection [86]. Another

hypothesis is related to continuous disturbances in MMP-9

gene transcription by unknown specific factors, which may

be supported by the result of mutation in FMR1gene

(leading to autism), in which the FMpR protein, natural of

MMP-9 translation inhibitor, is missing. In the animal

model (Fmfr1KO mice), administration of minocycline

resulted in maturation hippocampal dendritic spines and

behaviour improvement [83].

Though the relevant scientific studies gained great interest

in recent decades, the etiopathogenesis and underlying

mechanism of ADHD/HKD remain still unclear. So far,

laboratory, psychological or biological studies that could be

specific enough to allow explicit in diagnosis of ADHD/HKD

have been missing [36]. The structuralised interview and

either ICD-10 or DSM-IV/DSM-V are the fundamental ele-

ments of diagnosis. However, some variation in the domain of

impulsivity may suggest difficulty in understanding the place

for cognitive deficits in the clinical diagnosis of ADHD/

HKD. Therefore, a genetic defect determines a certain pre-

disposition to ADHD/HKD but environmental factors con-

tribute largely to the phenotype of the disorder [72, 87]. The

mechanism of the impact of unexplained environmental

factors is not clear, but MMP-9 may be associated with the

severity of symptoms.

To understand the processes engaged in cognitive dys-

function in ADHD/HKD, it is necessary to unravel
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Fig. 2 MMP-9 levels and Impulsivity
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signalling pathways, complex interaction networks and

metabolic alterations involving many anatomical compo-

nents. However, we are aware that the role of MMP-9 in

neurodevelopmental damage still remains unclear, and the

present study is the first to show the elevated levels of

serum MMP-9 in boys with HKD correlated with severity

of the disorder. The results indicate that the increased

levels of serum MMP-9 in boys with HKD are associated

with the clinical domain of impulsivity.
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